Alguien te promete que al invertir 3 mil pesos (o euros o dólares, o lo que tu quieras), recibirás de regreso 24 mil. ¿Tiene esto sentido? Aquí están las matemáticas de «la flor de la abundancia».
Si te cuesta trabajo seguir las fórmulas, visita: Flores de la abundancia… ¡con manzanas! para una versión en texto, fácil de seguir.
Un breviario
En la flor es más probable ganar que en algunos juegos de casino, aunque siempre a costa de muchos otros. Por cada ganador hay, en promedio, siete perdedores SIEMPRE. No tienen que ser de la misma flor que los ganadores, ni estar cerca en el tiempo o espacio a los mismos. Pero existen y son inevitables.
Vender la idea de que es algo seguro y sostenible es faltar a la verdad y un profundo engaño y estafa. Entrar es una decisión ética y moral de cada uno.
Lo que no es la flor:
- Una alternativa a los bancos (o la economía moderna)
La realidad es que es un mecanismo que mueve el dinero de muchos a las manos de unos pocos (los ganadores). No fomenta una equitativa distribución de la riqueza, sino todo lo contrario. - Un sistema sostenible
Es matemáticamente imposible sostener la flor de manera indefinida. No es una cuestión de voluntad, ánimo o ganas. Es matemáticamente IMPOSIBLE. Y sobre esa imposibilidad trata este artículo.
¿En qué consiste la flor?
Se forma un grupo de 15 personas repartidas en 4 niveles diferentes:
- Una en el primer nivel (el que recibe el dinero).
- Dos en el segundo nivel (el nivel de «apoyo motivacional»).
- Cuatro en el tercer nivel (el de aquellos que invitan a nuevos integrantes).
- Ocho en el cuarto nivel (el de los recién llegados y aquellos que ponen el dinero).
Cuando todos los integrantes del cuarto nivel han «regalado» su dinero, la flor se considera completa. El dinero es recibido por el individuo del nivel uno, que para llegar ahí tuvo que pasar (presuntamente) por todos los niveles anteriores. Él se retira, dividiendo la flor en dos nuevas, colocando a los integrantes originales en el nivel de numeración inferior al que poseían en la original.
Ambas flores carecen del último nivel que tienen el encargo de poblar, y la única forma de hacerlo es consiguiendo nuevos «inversionistas» que donen su dinero al nivel uno de sus respectivas flores. Y así, ad infinitum.
Bueno, ad infinitum no, porque el mundo no es infinito.
¿Cómo crece el número de personas necesarias?
En otras palabras: ¿a qué velocidad crece el número de personas necesarias para sostener la dinámica?
Imaginemos que solo existe una flor. La flor original. Olvidemos cómo llegaron los integrantes a cada uno de los niveles. Simplemente tenemos un grupo de 15 personas, 8 de las cuales han donado su dinero.
Inversionistas = 8
Ganadores = 1
La flor se divide en otras dos que necesitan, cada una, una tanda de 8 personas. Es decir, que se necesitan 16 personas en total. Con las flores ya completas y contando a la anterior, tenemos:
Inversionistas = 24
Ganadores = 3
Estas dos nuevas flores se dividen, creando 4 flores en total. Es fácil darse cuenta que los números se actualizan como sigue:
Inversionistas = 56
Ganadores = 7
En general, el número de inversionistas para m iteraciones del sistema (entendiendo como «iteración» la división de todas las flores vigentes) crece a la misma velocidad exponencial que el número de ganadores, porque en cada iteración se doblan. Pero el número de inversionistas siempre es mayor en un factor de 8, porque fueron más al principio.
El crecimiento de los inversionistas, para m iteraciones del sistema sigue la siguiente regla:
\displaystyle \sum_{n = 0}^{m} 2^{3 + n} = 8(2^{m + 1} - 1)
Mientras que el número de ganadores crece de la siguiente forma:
\displaystyle \sum_{n = 0}^{m} 2^{n} = 2^{m + 1} - 1
Como debe resultar evidente al observar las expresiones derechas, el número de ganadores es una octava parte de los inversionistas.
En otras palabras: la proporción entre ellos es siempre de 8 a 1, que es precisamente la proporción de la ganancia respecto a la inversión (si por ejemplo inviertes 3 mil ganas 24 mil. Que es lo mismo que 3 x 8 = 24).
Es decir, al ganar recibes los 3 mil que habías invertido y 21 mil de inversores distantes que probablemente jamás recuperarán su dinero, porque el dinero no se crea de la nada, y si alguien tiene más al final, es porque otro tiene menos.
Puede ganar mucha gente, pero los perdedores serán 7 veces más por lo menos. Esto asume que el dinero se regresa a los inversores de la última capa si la flor no se cierra. Los perdedores pueden ser muchos más si no es el caso.
Si los ganadores anteriores se reintegran al juego, ¿no se compensa el crecimiento de los inversionistas?
No importa mucho que se reintegren al juego, porque el número de inversionistas crece mucho más rápido. Imaginemos que el sistema completo ha alcanzado las 10 iteraciones. Esto nos da un total de «inversionistas» de 16,376:
8(2^{10 + 1} - 1) = 16,376
Mientras que el número de ganadores con el dinero en la mano hasta la iteración anterior ascendería tan sólo a 1,023:
2^{9 + 1} - 1 = 1,023
Como es obvio 1,023 ganadores no alcanzan para cubrir a los 16,376 inversionistas necesarios para completar la siguiente iteración. Siempre tiene que ingresar gente externa y siempre cada vez más.
¿Por qué cae el sistema?
Lo presentado con anterioridad es una versión simplificada del comportamiento global, que se puede complicar tanto como se desee. Siempre puede haber personas que inviertan en muchas flores a la vez, que usen más de un «pétalo» al momento de ingresar al juego, etc. Pero lo expresado arriba captura la esencia de la dinámica y el comportamiento que domina el sistema: el crecimiento exponencial. Ese crecimiento dominará siempre y por completo cualquier intento por minimizar sus efectos. Es imposible que no sea necesario agregar más personas de las que había anteriormente. Y además, cada vez más (el doble o casi el doble cada vez).
El sistema cae porque llega un momento en el que es imposible (no difícil ni arduo: imposible) conseguir más personas que ingresen a él.
Al momento de llegar a un número de iteraciones tan modesto como 20, el sistema habría necesitado 16,777,208 inversiones. Número que equivale casi a la cantidad de habitantes en el área metropolitana de la Ciudad de México. Y sí, para realizar una sola iteración más, ¡se necesitaría ese número de personas nuevas! Es evidente que el sistema caerá mucho antes de llegar tan lejos.
Cuide su dinero.
en verdad se puede ser tan ingenuo y creer q se puede cerrar la flor y q nadie pierda?
hay q ser idiota para no darse cuenta!!!
no fueron al colegio?
no entienden un poquito numeros tan simples???
x dioooos q gente mas estupida
gustavo lankan. ese es mi face. creo el problema es q la educacin nos mostro solo caminos de ida y no formas de pensar. te invito a conversar y te muestro como se cierran. saludosgu
Hola Gustavo lankan, me interesa que me expliques el sistema gracias mi correo es gael1474@hotmail.com
Hola Gustavo Lankan me interesa saber como cerraste la flor te dejo mi correo gilulau33@gmail.com
Y el crecimiento de la población no es acaso exponencial también? De ser así ésta estaría renovándose todo el tiempo y siempre habría gente nueva para ingresar. El crecimiento exponencial de la población es menos que el de los telares? Saludos
«El crecimiento exponencial de la población es menos que el de los telares?» Efectivamente, el crecimiento exponencial de la población es menor que el de los telares, pero no sólo eso, ningún crecimiento de este tipo puede sostenerse sin fin. Aunque el crecimiento de los telares fuera menor que el de la población no funcionaria, porque ese crecimiento de la población parará necesariamente.
Gustavo lankan no te encuentro en el face me podrias pasar a mi mail la info. Es caromansi.cm@gmail.com
hola a todos. mi facebook es gustavo lankan.
estoy armando uno llamado «como cerrar un fractal de la abundancia»
es cierto q hay muchos empresarios y medios de comunicacion tratando de difundir miedo y desconfianza para q este sistema no funcione.
a quienes me han escrito ahi les he respondido.
por favor no me pregunten como funciona la flor.
eso lo explica javier en estee post y lo hace muy bien.
escribanme los q quieren saber como cerrar una flor.
saludos.
el mail q puse aqui es falso, escribanme al face.
no voy a escribir a ningun mail de los q me mandaron.
saludos
gustavo sos garcia tambien….mi correo ro.martinez2008@hotmail.com
me evias info..
no aparece tu facebook
No hay sistema que pueda hacer cerrar una flor sin endeudar a más gente aún, para el caso simplemente cierren apropiadamente su flor, si lo que quieren es no perder. Que en su conciencia quede.
Yo si pude comunicarme con Gustavo, soy Gabriela la que aparece al principio de esta serie en verde y conviertiendo la respuesta que me envio Gustavo se puede cerrar el telar.
… a costa de otras flores, por supuesto. ¿O quién cierra las flores de las que sale la gente que te va a cerrar la tuya?
Hola Gabriela me puedes por favor ayudar, y me explicas como se cierra la flor…
Hola Gustavo, a mi también me interesa conocer como cerrar la flor urgente….me puedes responder a mi correo pathyflor@msn.com…..gracias y saludos!!
Hola Gustavo si me pudieras enviar mensaje al correo alegiva3@gmail.com.
Gracias
Números son números. Este asunto no tiene vuelta de hoja. De acuerdo a la mecánica del «telar», para que una persona (AGUA) gane, tiene que haber siete (FUEGO) que pierdan. Si alguien se siente mal por eso, mejor organicen TANDAS.
hola necesito que me expliquen lo que es TANDAS, es urgente, somos un grupo de 60 mujeres y no le encontramos la vuelta para no perder plata. Besos
La «tanda» no es nada que te pueda ayudar, es simplemente un tipo de ahorro diferido, donde puedes obtener el dinero que has ahorrado antes de juntarlo todo (de todas formas lo tienes que juntar).
Lo siento, pero si ya le entraste a la flor, con crudeza te digo que la única manera de no perder es hacer perder a más gente de la que ya va a perder. Tu decides.
Hola… mi recomendación para no perder plata es que «reviertan» la flor. Pidan que cada uno a quien le dieron plata se la devuelva, devuelvan la plata a cada uno que les dio plata. Los fuegos se van, los agua se convierten en fuego, se unen las flores, etc.
Si fue todo «en confianza» no va a haber problema. Y cuando terminen de revertir todo, cada uno va a terminar con la plata que empezó y nadie va a haber perdido ni ganado.
Hola, estas como Gustavo Lankán Garcia Saslavsky?